

LA-UR-21-28993

Approved for public release; distribution is unlimited.

Title: Slides for upcoming inter-laboratory round robin discussions

Author(s): May, Iain

Hanson, Susan Meriel Kloek

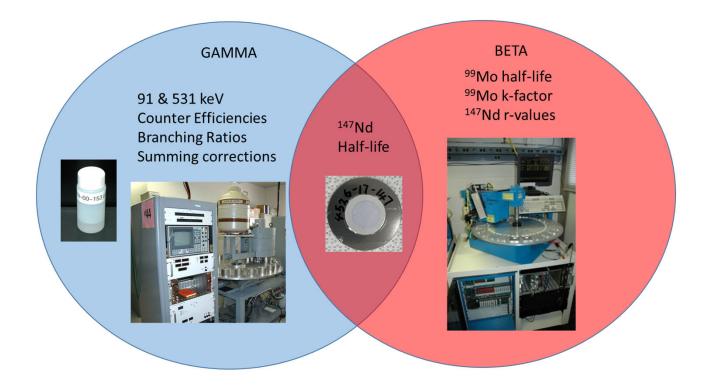
Intended for: discussion/presentation of results obtained at multiple participating

laboratories of a recent inter-laboratory measurement round robins

Issued: 2021-09-17 (rev.1)

Slides for upcoming inter-laboratory round robin discussions

lain May and Susan Hanson

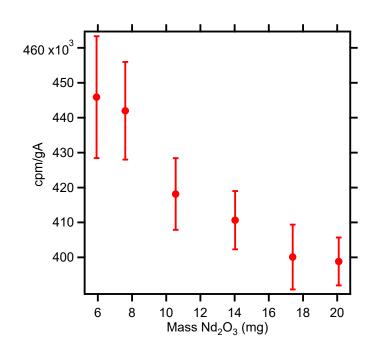

¹⁴⁷Nd Results – LANL

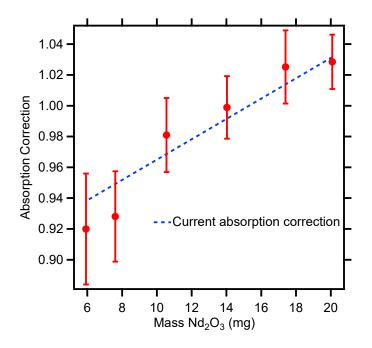
M. Dembowski, A.J. Gaunt, I. May & N.C. Smythe (Radiochemistry) and M.R. James, C.A. Lance, R.J. Rendon, J.R. Romero (Counting)

Method	dpm/gA	± %
Solution gamma	1.23E6	2.4
Separated gamma	1.26E6	2.5
Separated beta (no absorber)	1.26E6	2.4
Separated beta (absorber)	1.25E6	2.8

Gamma-ray spectrometry and beta counting

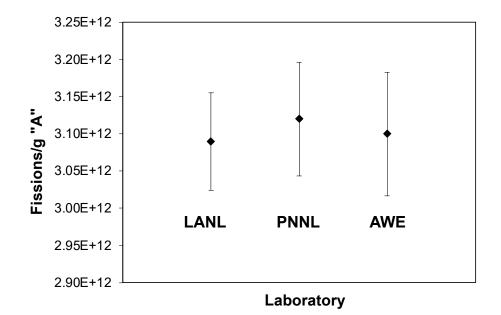
Beta Counting – Radiochemistry and Counting Methodology


¹⁴⁷Nd 'r' values generated with & without aluminum absorber (without & with ¹⁴⁷Pm)


$$^{147}Nd r = \frac{^{147}Nd cpm (^{235}U - thermal)}{^{99}Mo cpm (^{235}U - thermal)}$$

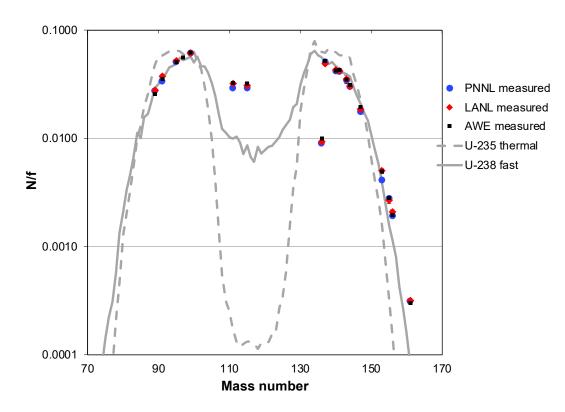
$$^{147}Nd\ K-factor\ (atoms/cpm) = \frac{^{99}Mo\ K-factor\ (fissions/cpm)}{^{147}Nd\ r_{(^{235}U-thermal)}} \times {}^{147}Nd\ FY(^{235}U-thermal)$$

Absorption Correction Measurements Good Agreement with Current Correction Equation

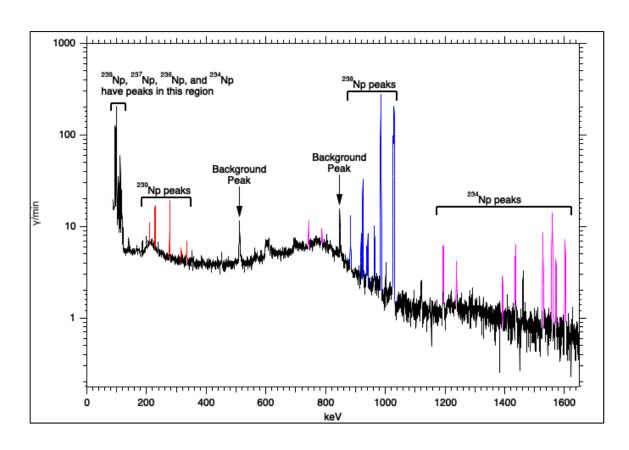

Main Findings

- Beta counting k-factor methodology used to determine activity/atoms
 - Both with/without an aluminum absorber (without/with weak beta emitting ¹⁴⁷Pm)
- Gamma-ray spectrometry measurements in good agreement with beta measurements
- Gravimetric yielding is the biggest contributor to the separated sample uncertainty budget
 - If lower uncertainties required chemical procedures can be developed to increase final masses

Total fissions per gram "A" measured at each laboratory

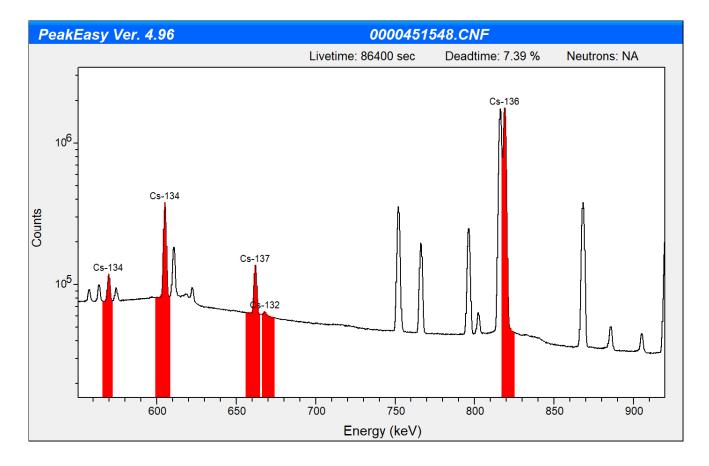

- LANL = 3.09E12 ± 2.12% (Mo-99 beta)
- PNNL = 3.12E12 ± 2.44% (Mo-99 gamma whole A)
- AWE = 3.10E12 ± 2.68% (Mo-99 gamma whole A)
- LLNL pending
- CIL pending

Fission product distributions for non-thermal sample


Laboratory	Measured ¹⁶¹ Tb R-value
LANL	371 ± 2.8%
PNNL	383 ± 3.8%

Unusual actinide isotopes measured

- In addition to ²³⁹Np, ²³⁸Np and ²³⁴Np were measured by gamma spectrometry at LANL and PNNL.
- Alpha spectrometry indicated that ²³⁵Np, ²³⁸Pu, and ²³⁶Pu were also present.



Unusual isotopes confirmed at multiple laboratories

Cs-132 @ 667.8 keV Detected at both LANL and PNNL

Production mode unclear

Conclusions

- A successful inter-laboratory round robin in summer 2021, enabling comparison of fission product measurements in a non-thermal spectrum
- The experiment allowed each laboratory to measure the standard set of fission products and short-lived actinides, as well as many unique isotopes
- The extreme elevations in wing and valley isotopes exceed anything expected for a nuclear detonation
- Discussions to identify and plan more realistic future fission product exercises are planned

